The Unum Number Format: Mathematical Foundations, Implementation and Comparison to IEEE 754 Floating-Point Numbers
نویسنده
چکیده
This thesis examines a modern concept for machine numbers based on interval arithmetic called 'Unums' and compares it to IEEE 754 floating-point arithmetic, evaluating possible uses of this format where floating-point numbers are inadequate. In the course of this examination, this thesis builds theoretical foundations for IEEE 754 floating-point numbers, interval arithmetic based on the projectively extended real numbers and Unums.
منابع مشابه
Up-to-date Interval Arithmetic: From Closed Intervals to Connected Sets of Real Numbers
This paper unifies the representations of different kinds of computer arithmetic. It is motivated by ideas developed in the book The End of Error by John Gustafson [5]. Here interval arithmetic just deals with connected sets of real numbers. These can be closed, open, half-open, bounded or unbounded. The first chapter gives a brief informal review of computer arithmetic from early floating-poin...
متن کاملComparison of pipelined IEEE-754 standard floating point adder with unpipelined adder
Many Digital Signal Processing (DSP) algorithms use floating-point arithmetic, which requires millions of calculations per second to be performed. For such stringent requirements, design of fast, precise and efficient circuits is the goal of every VLSI designer. This paper presents a comparison of pipelined floating-point adder complaint with IEEE 754 format with an unpipelined adder also compl...
متن کاملFPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations
In this project we explore the capability and flexibility of FPGA solutions in a sense to accelerate scientific computing applications which require very high precision arithmetic, based on IEEE 754 standard 128-bit floating-point number representations. Field Programmable Gate Arrays (FPGA) is increasingly being used to design high end computationally intense microprocessors capable of handlin...
متن کاملDesign and Implementation of a Mitchell-based Logarithmic Converter for a Floating Point Coprocessor
This paper presents a method to approach the implementation of a highly accurate logarithmic converter that operates with floating point numbers. For consistency purposes, it was necessary to adopt a standard to represent all floating point number. Hence, the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) was the one selected. This logarithmic converter is based on Mitchell’s alg...
متن کاملEasy Accurate Reading and Writing of Floating-Point Numbers
Presented here are algorithms for converting between (decimal) scientific-notation and (binary) IEEE-754 double-precision floating-point numbers. These algorithms are much simpler than those previously published. The values are stable under repeated conversions between the formats. The scientific representations generated have only the minimum number of mantissa digits needed to convert back to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.00722 شماره
صفحات -
تاریخ انتشار 2017